Questions And Answers

# List All Questions Search List by Category
Question I work for a school district in a position of IT support. 2 months into the job I queried with colleagues why we have no policy on ESD. The consensus was that ESD is no longer a big problem. How can I convince them otherwise?
I have seen computer components sitting unprotected on desks, RAM transported with no ESD protection, students with no knowledge of ESD asked to upgrade RAM or Vaccuum out computer cases, RAM stored in plastic food bags. The repairs department claims to have no problems with ESD.
I was trained to use anti-static mats and wrist straps, store everything in a closed anti-static bag, this no longer seems to be the vogue.
Answer

ElectroStatic Discharge (ESD) is the hidden enemy within your factory.  You cannot feel or see most ESD events but they can cause electronic components to fail or cause mysterious and annoying problems. There are two types of ESD damage: 1) Catastrophic failures, and 2) Latent defects.  By definition, normal quality control inspections are able to identify catastrophic failures, but are not able to detect latent defects.

 

In general, the ESD susceptibility of modern electronics are more sensitive to ElectroStatic Discharge; that is the withstand voltages are lower. This is due to the drive for miniaturization particularly with electronic devices operating faster. Thus the semiconductor circuitry is getting smaller.

 

See November 2001 Evaluation Engineering Magazine article “ESD Control Program Development” “As the drive for miniaturization has reduced the width of electronic device structures to as small as 0.10 micrometer (equal to 0.0001 millimeter or 0.000004 inch), electronic components are being manufactured with increased ElectroStatic Discharge (ESD) susceptibility.”

What’s happening currently? Intel began selling its 32 nm processors in 2010 that would be 0.032 micrometer equal to 0.000032 millimeter or 0.00000128 inch.

see www.ESDA.org, the ESD Association’s latest White Paper “Electrostatic Discharge (ESD) Technology Roadmap – Revised April 2010” forecasts increased ESD sensitivities continuing the recent “trend, the ICs became even more sensitive to ESD events in the years between 2005 and 2009. Therefore, the prevailing trend is circuit performance at the expense of ESD protection levels.” The White Paper’s conclusions are:

“With devices becoming more sensitive through 2010-2015 and beyond, it is imperative that companies begin to scrutinize the ESD capabilities of their handling processes. Factory ESD control is expected to play an ever-increasing critical role as the industry is flooded with even more HBM and CDM sensitive designs. For people handling ESD sensitive devices, personnel grounding systems must be designed to limit body voltages to less than 100 volts.

To protect against metal-to-device discharges, all conductive elements that contact ESD sensitive devices must be grounded.

To limit the possibilities of a field induced CDM ESD event, users of ESD sensitive devices should ensure that the maximum voltage induced on their devices is kept below 50 volts.

To limit CDM ESD events, device pins should be contacted with static-dissipative material instead of metal wherever possible.”

 

See InCompliance Magazine May 2010 article by Dr. Terry L. Welsher The "Real" Cost of ESD Damage which includes ““Recent data and experience reported by several companies and laboratories now suggest that many failures previously classified as EOS may instead be the result of ESD failures due to Charged Board Events (CBE). … Some companies have estimated that about 50% of failures originally designated as EOS were actually CBE or CDE.”

Related Categories:
 
If you have found this Q/A useful, please rate it based on its helpfulness.
Rating Rating Rating Rating Rating
This question has been rated: 0%0%
(0% at 0 Ratings)